Nuprl Lemma : decidable__and2

[P:ℙ]. ∀[Q:⋂:P. ℙ].  (Dec(P)  (P  Dec(Q))  Dec(P ∧ Q))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q isect: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q decidable: Dec(P) or: P ∨ Q member: t ∈ T subtype_rel: A ⊆B prop: guard: {T} not: ¬A and: P ∧ Q false: False
Lemmas referenced :  decidable_wf not_wf decidable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution unionElimination thin independent_functionElimination hypothesis cut lemma_by_obid isectElimination hypothesisEquality applyEquality lambdaEquality rename equalityTransitivity equalitySymmetry because_Cache sqequalRule inlFormation inrFormation productElimination voidElimination productEquality cumulativity functionEquality isectEquality universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[Q:\mcap{}:P.  \mBbbP{}].    (Dec(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  Dec(Q))  {}\mRightarrow{}  Dec(P  \mwedge{}  Q))



Date html generated: 2016_05_13-PM-03_09_02
Last ObjectModification: 2016_01_06-PM-05_27_22

Theory : core_2


Home Index