Nuprl Lemma : minus-poly-equiv
∀p:iPolynomial(). ipolynomial-term(minus-poly(p)) ≡ "-"ipolynomial-term(p)
Proof
Definitions occuring in Statement : 
minus-poly: minus-poly(p)
, 
ipolynomial-term: ipolynomial-term(p)
, 
iPolynomial: iPolynomial()
, 
equiv_int_terms: t1 ≡ t2
, 
itermMinus: "-"num
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iPolynomial: iPolynomial()
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
equiv_int_terms: t1 ≡ t2
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
ipolynomial-term: ipolynomial-term(p)
, 
minus-poly: minus-poly(p)
, 
top: Top
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
int_term_value: int_term_value(f;t)
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
itermMinus: "-"num
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
less_than: a < b
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
rev_uimplies: rev_uimplies(P;Q)
, 
minus-monomial: minus-monomial(m)
, 
itermAdd: left (+) right
Lemmas referenced : 
iPolynomial_wf, 
sq_stable__all, 
equal_wf, 
int_term_value_wf, 
ipolynomial-term_wf, 
minus-poly_wf, 
all_wf, 
int_seg_wf, 
length_wf, 
iMonomial_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
itermMinus_wf, 
sq_stable__equal, 
squash_wf, 
list_induction, 
equiv_int_terms_wf, 
list_wf, 
nil_wf, 
cons_wf, 
map_nil_lemma, 
null_nil_lemma, 
minus-zero, 
add-member-int_seg2, 
decidable__le, 
subtract_wf, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-associates, 
minus-one-mul-top, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
length_of_cons_lemma, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
lelt_wf, 
add-swap, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
true_wf, 
select-cons-tl, 
not-lt-2, 
le-add-cancel, 
add-subtract-cancel, 
map_cons_lemma, 
minus-monomial_wf, 
itermAdd_wf, 
imonomial-term_wf, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
equiv_int_terms_functionality, 
equiv_int_terms_transitivity, 
ipolynomial-term-cons, 
itermAdd_functionality, 
equiv_int_terms_weakening, 
itermMinus_functionality, 
mul-associates, 
add_functionality_wrt_eq, 
imonomial-term-linear, 
minus_functionality_wrt_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
isectElimination, 
functionEquality, 
intEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
axiomEquality, 
voidEquality, 
isect_memberEquality, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
addEquality, 
minusEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hyp_replacement, 
setEquality, 
independent_pairEquality, 
multiplyEquality, 
universeEquality
Latex:
\mforall{}p:iPolynomial().  ipolynomial-term(minus-poly(p))  \mequiv{}  "-"ipolynomial-term(p)
Date html generated:
2017_04_14-AM-08_58_46
Last ObjectModification:
2017_02_27-PM-03_41_35
Theory : omega
Home
Index