Nuprl Lemma : minus-poly-equiv

p:iPolynomial(). ipolynomial-term(minus-poly(p)) ≡ "-"ipolynomial-term(p)


Proof




Definitions occuring in Statement :  minus-poly: minus-poly(p) ipolynomial-term: ipolynomial-term(p) iPolynomial: iPolynomial() equiv_int_terms: t1 ≡ t2 itermMinus: "-"num all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] iPolynomial: iPolynomial() member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T equiv_int_terms: t1 ≡ t2 uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q guard: {T} so_apply: x[s] prop: subtype_rel: A ⊆B ipolynomial-term: ipolynomial-term(p) minus-poly: minus-poly(p) top: Top ifthenelse: if then else fi  btrue: tt int_term_value: int_term_value(f;t) itermConstant: "const" int_term_ind: int_term_ind itermMinus: "-"num uiff: uiff(P;Q) le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False subtract: m less_than': less_than'(a;b) true: True exists: x:A. B[x] nat: less_than: a < b iMonomial: iMonomial() int_nzero: -o rev_uimplies: rev_uimplies(P;Q) minus-monomial: minus-monomial(m) itermAdd: left (+) right
Lemmas referenced :  iPolynomial_wf sq_stable__all equal_wf int_term_value_wf ipolynomial-term_wf minus-poly_wf all_wf int_seg_wf length_wf iMonomial_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 itermMinus_wf sq_stable__equal squash_wf list_induction equiv_int_terms_wf list_wf nil_wf cons_wf map_nil_lemma null_nil_lemma minus-zero add-member-int_seg2 decidable__le subtract_wf false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-associates minus-one-mul-top zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 length_of_cons_lemma non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base lelt_wf add-swap int_seg_properties nat_properties decidable__lt true_wf select-cons-tl not-lt-2 le-add-cancel add-subtract-cancel map_cons_lemma minus-monomial_wf itermAdd_wf imonomial-term_wf subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self equiv_int_terms_functionality equiv_int_terms_transitivity ipolynomial-term-cons itermAdd_functionality equiv_int_terms_weakening itermMinus_functionality mul-associates add_functionality_wrt_eq imonomial-term-linear minus_functionality_wrt_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid hypothesis independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination isectElimination functionEquality intEquality lambdaEquality functionExtensionality applyEquality because_Cache dependent_set_memberEquality natural_numberEquality independent_isectElimination productElimination dependent_functionElimination axiomEquality voidEquality isect_memberEquality voidElimination independent_pairFormation unionElimination addEquality minusEquality dependent_pairFormation sqequalIntensionalEquality equalityTransitivity equalitySymmetry promote_hyp hyp_replacement setEquality independent_pairEquality multiplyEquality universeEquality

Latex:
\mforall{}p:iPolynomial().  ipolynomial-term(minus-poly(p))  \mequiv{}  "-"ipolynomial-term(p)



Date html generated: 2017_04_14-AM-08_58_46
Last ObjectModification: 2017_02_27-PM-03_41_35

Theory : omega


Home Index