Nuprl Lemma : ipolynomial-term-cons
∀[m:iMonomial()]. ∀[p:iMonomial() List].  ipolynomial-term([m / p]) ≡ imonomial-term(m) "+" ipolynomial-term(p)
Proof
Definitions occuring in Statement : 
ipolynomial-term: ipolynomial-term(p), 
imonomial-term: imonomial-term(m), 
iMonomial: iMonomial(), 
equiv_int_terms: t1 ≡ t2, 
itermAdd: left "+" right, 
cons: [a / b], 
list: T List, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
ipolynomial-term: ipolynomial-term(p), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
cons: [a / b], 
equiv_int_terms: t1 ≡ t2, 
int_term_value: int_term_value(f;t), 
itermAdd: left "+" right, 
int_term_ind: int_term_ind, 
itermConstant: "const", 
subtype_rel: A ⊆r B, 
iMonomial: iMonomial(), 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
int_nzero: ℤ-o, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
iMonomial_wf, 
list-cases, 
null_cons_lemma, 
spread_cons_lemma, 
null_nil_lemma, 
list_accum_nil_lemma, 
product_subtype_list, 
list_accum_cons_lemma, 
list_wf, 
add-zero, 
int_term_value_wf, 
imonomial-term_wf, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
itermAdd_wf, 
equiv_int_terms_weakening, 
list_induction, 
all_wf, 
int_term_wf, 
equiv_int_terms_wf, 
list_accum_wf, 
subtype_rel_list, 
equiv_int_terms_functionality, 
itermAdd_functionality, 
add-associates, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
lambdaEquality, 
axiomEquality, 
functionEquality, 
intEquality, 
because_Cache, 
lambdaFormation, 
applyEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_pairEquality, 
independent_functionElimination, 
productEquality, 
addEquality
Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term([m  /  p])  \mequiv{}  imonomial-term(m)  "+"  ipolynomial-term(p)
 Date html generated: 
2016_05_14-AM-07_00_57
 Last ObjectModification: 
2015_12_26-PM-01_11_56
Theory : omega
Home
Index