Nuprl Lemma : ipolynomial-term-cons

[m:iMonomial()]. ∀[p:iMonomial() List].  ipolynomial-term([m p]) ≡ imonomial-term(m) "+" ipolynomial-term(p)


Proof




Definitions occuring in Statement :  ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() equiv_int_terms: t1 ≡ t2 itermAdd: left "+" right cons: [a b] list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q ipolynomial-term: ipolynomial-term(p) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  bfalse: ff btrue: tt cons: [a b] equiv_int_terms: t1 ≡ t2 int_term_value: int_term_value(f;t) itermAdd: left "+" right int_term_ind: int_term_ind itermConstant: "const" subtype_rel: A ⊆B iMonomial: iMonomial() so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] int_nzero: -o implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  iMonomial_wf list-cases null_cons_lemma spread_cons_lemma null_nil_lemma list_accum_nil_lemma product_subtype_list list_accum_cons_lemma list_wf add-zero int_term_value_wf imonomial-term_wf subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self itermAdd_wf equiv_int_terms_weakening list_induction all_wf int_term_wf equiv_int_terms_wf list_accum_wf subtype_rel_list equiv_int_terms_functionality itermAdd_functionality add-associates add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule isect_memberEquality voidElimination voidEquality promote_hyp hypothesis_subsumption productElimination lambdaEquality axiomEquality functionEquality intEquality because_Cache lambdaFormation applyEquality setEquality independent_isectElimination setElimination rename independent_pairEquality independent_functionElimination productEquality addEquality

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term([m  /  p])  \mequiv{}  imonomial-term(m)  "+"  ipolynomial-term(p)



Date html generated: 2016_05_14-AM-07_00_57
Last ObjectModification: 2015_12_26-PM-01_11_56

Theory : omega


Home Index