Nuprl Lemma : equiv_int_terms_functionality

[x1,x2,y1,y2:int_term()].  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term: int_term() uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q equiv_int_terms: t1 ≡ t2 all: x:A. B[x] prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equiv_int_terms_wf int_term_wf equal_wf squash_wf true_wf int_term_value_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lambdaFormation hypothesis functionEquality intEquality sqequalRule lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality extract_by_obid isectElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry applyEquality imageElimination universeEquality functionExtensionality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[x1,x2,y1,y2:int\_term()].    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)



Date html generated: 2017_04_14-AM-08_57_35
Last ObjectModification: 2017_02_27-PM-03_40_56

Theory : omega


Home Index