Nuprl Lemma : list_accum_nil_lemma
∀z,f:Top.  (accumulate (with value x and list item y): f[x;y]over list:  []with starting value: z) ~ z)
Proof
Definitions occuring in Statement : 
list_accum: list_accum, 
nil: []
, 
top: Top
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
callbyvalueReduce, 
sqleReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}z,f:Top.
    (accumulate  (with  value  x  and  list  item  y):
        f[x;y]
      over  list:
          []
      with  starting  value:
        z)  \msim{}  z)
Date html generated:
2018_05_21-PM-00_18_38
Last ObjectModification:
2018_05_19-AM-06_58_48
Theory : list_0
Home
Index