Nuprl Lemma : equiv_int_terms_weakening

[t1,t2:int_term()].  t1 ≡ t2 supposing t1 t2 ∈ int_term()


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term: int_term() uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_int_terms: t1 ≡ t2 all: x:A. B[x] and: P ∧ Q prop:
Lemmas referenced :  and_wf equal_wf int_term_wf int_term_value_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation equalitySymmetry dependent_set_memberEquality hypothesis independent_pairFormation hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality lambdaEquality setElimination rename productElimination setEquality functionEquality intEquality sqequalRule dependent_functionElimination axiomEquality isect_memberEquality because_Cache equalityTransitivity

Latex:
\mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2



Date html generated: 2016_05_14-AM-06_59_46
Last ObjectModification: 2015_12_26-PM-01_12_40

Theory : omega


Home Index