Nuprl Lemma : equiv_int_terms_weakening
∀[t1,t2:int_term()].  t1 ≡ t2 supposing t1 = t2 ∈ int_term()
Proof
Definitions occuring in Statement : 
equiv_int_terms: t1 ≡ t2
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
equiv_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
equal_wf, 
int_term_wf, 
int_term_value_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
functionEquality, 
intEquality, 
sqequalRule, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity
Latex:
\mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2
Date html generated:
2016_05_14-AM-06_59_46
Last ObjectModification:
2015_12_26-PM-01_12_40
Theory : omega
Home
Index