Nuprl Lemma : imonomial-term-linear

f:ℤ ⟶ ℤ. ∀ws:ℤ List. ∀c:ℤ.  (int_term_value(f;imonomial-term(<c, ws>)) (c int_term_value(f;imonomial-term(<1, ws>)\000C)) ∈ ℤ)


Proof




Definitions occuring in Statement :  imonomial-term: imonomial-term(m) int_term_value: int_term_value(f;t) list: List all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: imonomial-term: imonomial-term(m) int_term_value: int_term_value(f;t) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] itermConstant: "const" int_term_ind: int_term_ind subtype_rel: A ⊆B true: True squash: T uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf equal_wf int_term_value_wf imonomial-term_wf list_wf list_accum_nil_lemma mul-commutes one-mul squash_wf true_wf imonomial-cons iff_weakening_equal mul-associates mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality functionExtensionality applyEquality hypothesisEquality independent_pairEquality hypothesis multiplyEquality natural_numberEquality independent_functionElimination rename because_Cache dependent_functionElimination functionEquality isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}c:\mBbbZ{}.    (int\_term\_value(f;imonomial-term(<c,  ws>))  =  (c  *  int\_term\_value(f;imo\000Cnomial-term(ə,  ws>))))



Date html generated: 2017_04_14-AM-08_57_53
Last ObjectModification: 2017_02_27-PM-03_41_06

Theory : omega


Home Index