Nuprl Lemma : imonomial-term-linear
∀f:ℤ ⟶ ℤ. ∀ws:ℤ List. ∀c:ℤ. (int_term_value(f;imonomial-term(<c, ws>)) = (c * int_term_value(f;imonomial-term(<1, ws>)\000C)) ∈ ℤ)
Proof
Definitions occuring in Statement :
imonomial-term: imonomial-term(m)
,
int_term_value: int_term_value(f;t)
,
list: T List
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
pair: <a, b>
,
multiply: n * m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
prop: ℙ
,
imonomial-term: imonomial-term(m)
,
int_term_value: int_term_value(f;t)
,
top: Top
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
itermConstant: "const"
,
int_term_ind: int_term_ind,
subtype_rel: A ⊆r B
,
true: True
,
squash: ↓T
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
list_induction,
all_wf,
equal_wf,
int_term_value_wf,
imonomial-term_wf,
list_wf,
list_accum_nil_lemma,
mul-commutes,
one-mul,
squash_wf,
true_wf,
imonomial-cons,
iff_weakening_equal,
mul-associates,
mul-swap
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
intEquality,
sqequalRule,
lambdaEquality,
functionExtensionality,
applyEquality,
hypothesisEquality,
independent_pairEquality,
hypothesis,
multiplyEquality,
natural_numberEquality,
independent_functionElimination,
rename,
because_Cache,
dependent_functionElimination,
functionEquality,
isect_memberEquality,
voidElimination,
voidEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination
Latex:
\mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}. \mforall{}ws:\mBbbZ{} List. \mforall{}c:\mBbbZ{}. (int\_term\_value(f;imonomial-term(<c, ws>)) = (c * int\_term\_value(f;imo\000Cnomial-term(ə, ws>))))
Date html generated:
2017_04_14-AM-08_57_53
Last ObjectModification:
2017_02_27-PM-03_41_06
Theory : omega
Home
Index