Nuprl Lemma : imonomial-term-linear
∀f:ℤ ⟶ ℤ. ∀ws:ℤ List. ∀c:ℤ.  (int_term_value(f;imonomial-term(<c, ws>)) = (c * int_term_value(f;imonomial-term(<1, ws>)\000C)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imonomial-term: imonomial-term(m)
, 
int_term_value: int_term_value(f;t)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
imonomial-term: imonomial-term(m)
, 
int_term_value: int_term_value(f;t)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
equal_wf, 
int_term_value_wf, 
imonomial-term_wf, 
list_wf, 
list_accum_nil_lemma, 
mul-commutes, 
one-mul, 
squash_wf, 
true_wf, 
imonomial-cons, 
iff_weakening_equal, 
mul-associates, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
multiplyEquality, 
natural_numberEquality, 
independent_functionElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}c:\mBbbZ{}.    (int\_term\_value(f;imonomial-term(<c,  ws>))  =  (c  *  int\_term\_value(f;imo\000Cnomial-term(ə,  ws>))))
Date html generated:
2017_04_14-AM-08_57_53
Last ObjectModification:
2017_02_27-PM-03_41_06
Theory : omega
Home
Index