Nuprl Lemma : imonomial-cons

v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ.  (int_term_value(f;imonomial-term(<a, [u v]>)) int_term_value(f;imonomial-term(<(f\000C u), v>)) ∈ ℤ)


Proof




Definitions occuring in Statement :  imonomial-term: imonomial-term(m) int_term_value: int_term_value(f;t) cons: [a b] list: List all: x:A. B[x] apply: a function: x:A ⟶ B[x] pair: <a, b> multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: imonomial-term: imonomial-term(m) int_term_value: int_term_value(f;t) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] itermConstant: "const" int_term_ind: int_term_ind itermMultiply: left (*) right itermVar: vvar squash: T true: True
Lemmas referenced :  list_induction all_wf equal_wf int_term_value_wf imonomial-term_wf cons_wf list_wf list_accum_cons_lemma list_accum_nil_lemma squash_wf true_wf int_term_wf list_accum_wf itermMultiply_wf itermVar_wf itermConstant_wf int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality functionEquality functionExtensionality applyEquality hypothesisEquality independent_pairEquality hypothesis multiplyEquality independent_functionElimination rename because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.    (int\_term\_value(f;imonomial-term(<a,  [u  /  v]>))  =  int\_term\_value(f;im\000Conomial-term(<a  *  (f  u),  v>)))



Date html generated: 2017_04_14-AM-08_57_49
Last ObjectModification: 2017_02_27-PM-03_41_16

Theory : omega


Home Index