Nuprl Lemma : imonomial-cons
∀v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ.  (int_term_value(f;imonomial-term(<a, [u / v]>)) = int_term_value(f;imonomial-term(<a * (f\000C u), v>)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imonomial-term: imonomial-term(m)
, 
int_term_value: int_term_value(f;t)
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
imonomial-term: imonomial-term(m)
, 
int_term_value: int_term_value(f;t)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right
, 
itermVar: vvar
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
list_induction, 
all_wf, 
equal_wf, 
int_term_value_wf, 
imonomial-term_wf, 
cons_wf, 
list_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
squash_wf, 
true_wf, 
int_term_wf, 
list_accum_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
multiplyEquality, 
independent_functionElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.    (int\_term\_value(f;imonomial-term(<a,  [u  /  v]>))  =  int\_term\_value(f;im\000Conomial-term(<a  *  (f  u),  v>)))
Date html generated:
2017_04_14-AM-08_57_49
Last ObjectModification:
2017_02_27-PM-03_41_16
Theory : omega
Home
Index