Nuprl Lemma : itermMultiply_wf
∀[left,right:int_term()].  (left (*) right ∈ int_term())
Proof
Definitions occuring in Statement : 
itermMultiply: left (*) right
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_term: int_term()
, 
itermMultiply: left (*) right
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
int_termco_size: int_termco_size(p)
, 
int_term_size: int_term_size(p)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_termco-ext, 
ifthenelse_wf, 
eq_atom_wf, 
int_termco_wf, 
add_nat_wf, 
istype-void, 
le_wf, 
int_term_size_wf, 
value-type-has-value, 
nat_wf, 
set-value-type, 
istype-int, 
int-value-type, 
has-value_wf-partial, 
int_termco_size_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
Error :dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
Error :dependent_pairEquality_alt, 
tokenEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
instantiate, 
isectElimination, 
universeEquality, 
intEquality, 
productEquality, 
voidEquality, 
applyEquality, 
productElimination, 
natural_numberEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
independent_isectElimination, 
Error :lambdaEquality_alt, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[left,right:int\_term()].    (left  (*)  right  \mmember{}  int\_term())
Date html generated:
2019_06_20-PM-00_44_58
Last ObjectModification:
2018_10_03-AM-00_45_34
Theory : omega
Home
Index