Nuprl Lemma : int_term_size_wf
∀[p:int_term()]. (int_term_size(p) ∈ ℕ)
Proof
Definitions occuring in Statement : 
int_term_size: int_term_size(p)
, 
int_term: int_term()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_term_size: int_term_size(p)
, 
int_termco_size: int_termco_size(p)
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
termination, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
int_termco_size_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality
Latex:
\mforall{}[p:int\_term()].  (int\_term\_size(p)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-AM-06_57_50
Last ObjectModification:
2015_12_26-PM-01_13_51
Theory : omega
Home
Index