Nuprl Lemma : int_term_size_wf

[p:int_term()]. (int_term_size(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  int_term_size: int_term_size(p) int_term: int_term() nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_term_size: int_term_size(p) int_termco_size: int_termco_size(p) int_term: int_term() uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  termination nat_wf set-value-type le_wf int-value-type int_termco_size_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality

Latex:
\mforall{}[p:int\_term()].  (int\_term\_size(p)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-06_57_50
Last ObjectModification: 2015_12_26-PM-01_13_51

Theory : omega


Home Index