Step
*
of Lemma
imonomial-cons
∀v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u / v]>)) = int_term_value(f;imonomial-term(<a * (f\000C u), v>)) ∈ ℤ)
BY
{ InductionOnList }
1
∀u,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u]>)) = int_term_value(f;imonomial-term(<a * (f u), []>)) ∈ ℤ)
2
1. u : ℤ
2. v : ℤ List
3. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u / v]>)) = int_term_value(f;imonomial-term(<a * (f u), v>)\000C) ∈ ℤ)
⊢ ∀u@0,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u@0; [u / v]]>)) = int_term_value(f;imonomial-term(<a * (f\000C u@0), [u / v]>)) ∈ ℤ)
Latex:
Latex:
\mforall{}v:\mBbbZ{} List. \mforall{}u,a:\mBbbZ{}. \mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}. (int\_term\_value(f;imonomial-term(<a, [u / v]>)) = int\_term\_value(f;im\000Conomial-term(<a * (f u), v>)))
By
Latex:
InductionOnList
Home
Index