Nuprl Lemma : satisfies-negate-poly-constraints

f:ℤ ⟶ ℤ. ∀L:polynomial-constraints() List.
  ((∀X∈L.¬satisfies-poly-constraints(f;X)) ⇐⇒ (∃X∈negate-poly-constraints(L). satisfies-poly-constraints(f;X)))


Proof




Definitions occuring in Statement :  negate-poly-constraints: negate-poly-constraints(Xs) satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) list: List all: x:A. B[x] iff: ⇐⇒ Q not: ¬A function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q cons: [a b] negate-poly-constraints: negate-poly-constraints(Xs) ifthenelse: if then else fi  btrue: tt satisfies-poly-constraints: satisfies-poly-constraints(f;X) iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: rev_implies:  Q so_lambda: λ2x.t[x] top: Top so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B polynomial-constraints: polynomial-constraints() so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff not: ¬A false: False guard: {T}
Lemmas referenced :  polynomial-constraints_wf list-cases product_subtype_list list_wf null_nil_lemma true_wf l_all_nil_iff l_all_wf_nil le_wf int_term_value_wf ipolynomial-term_wf iff_wf l_exists_single satisfies-poly-constraints_wf nil_wf subtype_rel_product iPolynomial_wf subtype_rel_list l_exists_wf cons_wf l_member_wf negate-poly-constraint_wf null_cons_lemma spread_cons_lemma equal_wf l_all_cons l_all_wf list_accum_wf and-poly-constraints_wf list_induction all_wf list_accum_nil_lemma list_accum_cons_lemma satisfies-and-poly-constraints negate-poly-constraints_wf not_wf satisfies-negate-poly-constraint l_all_iff
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule functionEquality intEquality independent_pairFormation natural_numberEquality productEquality addLevel impliesFunctionality isect_memberEquality voidElimination voidEquality independent_isectElimination andLevelFunctionality lambdaEquality functionExtensionality applyEquality independent_pairEquality because_Cache independent_functionElimination setElimination rename setEquality equalityTransitivity equalitySymmetry allFunctionality allLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:polynomial-constraints()  List.
    ((\mforall{}X\mmember{}L.\mneg{}satisfies-poly-constraints(f;X))
    \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}negate-poly-constraints(L).  satisfies-poly-constraints(f;X)))



Date html generated: 2017_04_14-AM-09_03_06
Last ObjectModification: 2017_02_27-PM-03_43_54

Theory : omega


Home Index