Nuprl Lemma : satisfies-negate-poly-constraints
∀f:ℤ ⟶ ℤ. ∀L:polynomial-constraints() List.
  ((∀X∈L.¬satisfies-poly-constraints(f;X)) 
⇐⇒ (∃X∈negate-poly-constraints(L). satisfies-poly-constraints(f;X)))
Proof
Definitions occuring in Statement : 
negate-poly-constraints: negate-poly-constraints(Xs)
, 
satisfies-poly-constraints: satisfies-poly-constraints(f;X)
, 
polynomial-constraints: polynomial-constraints()
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
negate-poly-constraints: negate-poly-constraints(Xs)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
satisfies-poly-constraints: satisfies-poly-constraints(f;X)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
polynomial-constraints: polynomial-constraints()
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
not: ¬A
, 
false: False
, 
guard: {T}
Lemmas referenced : 
polynomial-constraints_wf, 
list-cases, 
product_subtype_list, 
list_wf, 
null_nil_lemma, 
true_wf, 
l_all_nil_iff, 
l_all_wf_nil, 
le_wf, 
int_term_value_wf, 
ipolynomial-term_wf, 
iff_wf, 
l_exists_single, 
satisfies-poly-constraints_wf, 
nil_wf, 
subtype_rel_product, 
iPolynomial_wf, 
subtype_rel_list, 
l_exists_wf, 
cons_wf, 
l_member_wf, 
negate-poly-constraint_wf, 
null_cons_lemma, 
spread_cons_lemma, 
equal_wf, 
l_all_cons, 
l_all_wf, 
list_accum_wf, 
and-poly-constraints_wf, 
list_induction, 
all_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
satisfies-and-poly-constraints, 
negate-poly-constraints_wf, 
not_wf, 
satisfies-negate-poly-constraint, 
l_all_iff
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
functionEquality, 
intEquality, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
addLevel, 
impliesFunctionality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
andLevelFunctionality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
independent_pairEquality, 
because_Cache, 
independent_functionElimination, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
allFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:polynomial-constraints()  List.
    ((\mforall{}X\mmember{}L.\mneg{}satisfies-poly-constraints(f;X))
    \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}negate-poly-constraints(L).  satisfies-poly-constraints(f;X)))
Date html generated:
2017_04_14-AM-09_03_06
Last ObjectModification:
2017_02_27-PM-03_43_54
Theory : omega
Home
Index