Nuprl Lemma : satisfies-negate-poly-constraint

X:polynomial-constraints(). ∀f:ℤ ⟶ ℤ.
  ((∃Z∈negate-poly-constraint(X). satisfies-poly-constraints(f;Z)) ⇐⇒ ¬satisfies-poly-constraints(f;X))


Proof




Definitions occuring in Statement :  negate-poly-constraint: negate-poly-constraint(X) satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() l_exists: (∃x∈L. P[x]) all: x:A. B[x] iff: ⇐⇒ Q not: ¬A function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] polynomial-constraints: polynomial-constraints() member: t ∈ T satisfies-poly-constraints: satisfies-poly-constraints(f;X) l_all: (∀x∈L.P[x]) uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T subtype_rel: A ⊆B iPolynomial: iPolynomial() so_apply: x[s] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q prop: rev_implies:  Q int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) guard: {T} false: False cand: c∧ B exists: x:A. B[x] int_term_value: int_term_value(f;t) itermMinus: "-"num int_term_ind: int_term_ind itermAdd: left (+) right top: Top le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) subtract: m nat_plus: + less_than: a < b l_exists: (∃x∈L. P[x]) negate-poly-constraint: negate-poly-constraint(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  polynomial-constraints_wf decidable__all_int_seg length_wf iPolynomial_wf equal-wf-T-base int_term_value_wf ipolynomial-term_wf select_wf sq_stable__le int_seg_wf decidable__equal_int le_wf decidable__le not_wf l_all_wf l_member_wf or_wf l_exists_wf minus-poly_wf const-poly_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf add-ipoly_wf1 l_exists_iff exists_wf l_all_iff all_wf itermMinus_wf itermAdd_wf squash_wf int_term_value_functionality equiv_int_terms_transitivity minus-poly-equiv itermMinus_functionality add-ipoly-equiv iff_weakening_equal const-poly-value equal_wf minus-is-int-iff minus-add minus-one-mul add-commutes add-is-int-iff add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul-top zero-add one-mul add-mul-special add-associates two-mul mul-distributes-right zero-mul minus-minus mul-associates add-swap add-zero omega-shadow less_than_wf decidable__exists_int_seg not-le-2 minus-zero false_wf decidable__or condition-implies-le le-add-cancel-alt not-equal-implies-less subtype_rel_self less-iff-le satisfies-poly-constraints_wf list_wf iff_wf negate-poly-constraint_wf nil_wf list_induction list_accum_wf cons_wf list_accum_nil_lemma list_accum_cons_lemma l_exists_nil l_exists_wf_nil l_exists_cons l_all_nil_iff l_all_single l_all_wf_nil le-add-cancel map_wf subtype_rel_product subtype_rel_list l_exists_map l_exists_functionality set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename functionEquality intEquality cut introduction extract_by_obid hypothesis sqequalRule instantiate dependent_functionElimination natural_numberEquality isectElimination hypothesisEquality lambdaEquality functionExtensionality applyEquality setElimination because_Cache independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination independent_pairFormation productEquality setEquality dependent_set_memberEquality addLevel cumulativity equalityTransitivity equalitySymmetry voidElimination minusEquality orFunctionality levelHypothesis promote_hyp andLevelFunctionality orLevelFunctionality isect_memberEquality voidEquality universeEquality addEquality baseApply closedConclusion multiplyEquality inrFormation dependent_pairFormation inlFormation impliesFunctionality independent_pairEquality allFunctionality

Latex:
\mforall{}X:polynomial-constraints().  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.
    ((\mexists{}Z\mmember{}negate-poly-constraint(X).  satisfies-poly-constraints(f;Z))
    \mLeftarrow{}{}\mRightarrow{}  \mneg{}satisfies-poly-constraints(f;X))



Date html generated: 2017_04_14-AM-09_02_54
Last ObjectModification: 2017_02_27-PM-03_48_20

Theory : omega


Home Index