Nuprl Lemma : satisfies-negate-poly-constraint
∀X:polynomial-constraints(). ∀f:ℤ ⟶ ℤ.
  ((∃Z∈negate-poly-constraint(X). satisfies-poly-constraints(f;Z)) ⇐⇒ ¬satisfies-poly-constraints(f;X))
Proof
Definitions occuring in Statement : 
negate-poly-constraint: negate-poly-constraint(X), 
satisfies-poly-constraints: satisfies-poly-constraints(f;X), 
polynomial-constraints: polynomial-constraints(), 
l_exists: (∃x∈L. P[x]), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
polynomial-constraints: polynomial-constraints(), 
member: t ∈ T, 
satisfies-poly-constraints: satisfies-poly-constraints(f;X), 
l_all: (∀x∈L.P[x]), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
sq_type: SQType(T), 
guard: {T}, 
false: False, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
int_term_value: int_term_value(f;t), 
itermMinus: "-"num, 
int_term_ind: int_term_ind, 
itermAdd: left (+) right, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
subtract: n - m, 
nat_plus: ℕ+, 
less_than: a < b, 
l_exists: (∃x∈L. P[x]), 
negate-poly-constraint: negate-poly-constraint(X), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
polynomial-constraints_wf, 
decidable__all_int_seg, 
length_wf, 
iPolynomial_wf, 
equal-wf-T-base, 
int_term_value_wf, 
ipolynomial-term_wf, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
decidable__equal_int, 
le_wf, 
decidable__le, 
not_wf, 
l_all_wf, 
l_member_wf, 
or_wf, 
l_exists_wf, 
minus-poly_wf, 
const-poly_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
add-ipoly_wf1, 
l_exists_iff, 
exists_wf, 
l_all_iff, 
all_wf, 
itermMinus_wf, 
itermAdd_wf, 
squash_wf, 
int_term_value_functionality, 
equiv_int_terms_transitivity, 
minus-poly-equiv, 
itermMinus_functionality, 
add-ipoly-equiv, 
iff_weakening_equal, 
const-poly-value, 
equal_wf, 
minus-is-int-iff, 
minus-add, 
minus-one-mul, 
add-commutes, 
add-is-int-iff, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul-top, 
zero-add, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
mul-distributes-right, 
zero-mul, 
minus-minus, 
mul-associates, 
add-swap, 
add-zero, 
omega-shadow, 
less_than_wf, 
decidable__exists_int_seg, 
not-le-2, 
minus-zero, 
false_wf, 
decidable__or, 
condition-implies-le, 
le-add-cancel-alt, 
not-equal-implies-less, 
subtype_rel_self, 
less-iff-le, 
satisfies-poly-constraints_wf, 
list_wf, 
iff_wf, 
negate-poly-constraint_wf, 
nil_wf, 
list_induction, 
list_accum_wf, 
cons_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
l_exists_nil, 
l_exists_wf_nil, 
l_exists_cons, 
l_all_nil_iff, 
l_all_single, 
l_all_wf_nil, 
le-add-cancel, 
map_wf, 
subtype_rel_product, 
subtype_rel_list, 
l_exists_map, 
l_exists_functionality, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
functionEquality, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
instantiate, 
dependent_functionElimination, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
setElimination, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_pairFormation, 
productEquality, 
setEquality, 
dependent_set_memberEquality, 
addLevel, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
minusEquality, 
orFunctionality, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality, 
orLevelFunctionality, 
isect_memberEquality, 
voidEquality, 
universeEquality, 
addEquality, 
baseApply, 
closedConclusion, 
multiplyEquality, 
inrFormation, 
dependent_pairFormation, 
inlFormation, 
impliesFunctionality, 
independent_pairEquality, 
allFunctionality
Latex:
\mforall{}X:polynomial-constraints().  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.
    ((\mexists{}Z\mmember{}negate-poly-constraint(X).  satisfies-poly-constraints(f;Z))
    \mLeftarrow{}{}\mRightarrow{}  \mneg{}satisfies-poly-constraints(f;X))
Date html generated:
2017_04_14-AM-09_02_54
Last ObjectModification:
2017_02_27-PM-03_48_20
Theory : omega
Home
Index