Nuprl Lemma : l_exists_nil

[P:Top]. ((∃x∈[]. P[x]) ⇐⇒ False)


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s] iff: ⇐⇒ Q false: False
Definitions unfolded in proof :  l_exists: (∃x∈L. P[x]) select: L[n] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  top_wf false_wf int_seg_wf exists_wf less_than_irreflexivity less_than_transitivity1 base_wf stuck-spread length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality isect_memberFormation independent_pairFormation productElimination setElimination rename hypothesisEquality natural_numberEquality independent_functionElimination because_Cache lambdaEquality

Latex:
\mforall{}[P:Top].  ((\mexists{}x\mmember{}[].  P[x])  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2016_05_14-AM-06_40_22
Last ObjectModification: 2016_01_06-PM-08_33_59

Theory : list_0


Home Index