Nuprl Lemma : l_exists_map

[A,B:Type].  ∀f:A ⟶ B. ∀L:A List.  ∀[P:B ⟶ ℙ]. ((∃x∈map(f;L). P[x]) ⇐⇒ (∃x∈L. P[f x]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T cand: c∧ B so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} rev_implies:  Q so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel_self iff_weakening_equal l_member_wf member_map map_wf l_exists_iff l_exists_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut independent_pairFormation sqequalHypSubstitution productElimination thin Error :dependent_pairFormation_alt,  hypothesisEquality hypothesis applyEquality equalitySymmetry sqequalRule instantiate introduction extract_by_obid isectElimination universeEquality equalityTransitivity independent_isectElimination independent_functionElimination Error :productIsType,  Error :universeIsType,  because_Cache Error :equalityIsType1,  Error :inhabitedIsType,  dependent_functionElimination promote_hyp Error :lambdaEquality_alt,  setElimination rename functionExtensionality cumulativity Error :setIsType,  Error :functionIsType

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.    \mforall{}[P:B  {}\mrightarrow{}  \mBbbP{}].  ((\mexists{}x\mmember{}map(f;L).  P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  P[f  x]))



Date html generated: 2019_06_20-PM-00_41_41
Last ObjectModification: 2018_10_01-PM-08_40_24

Theory : list_0


Home Index