Nuprl Lemma : member_map
∀[T,T':Type].  ∀a:T List. ∀x:T'. ∀f:T ⟶ T'.  ((x ∈ map(f;a)) 
⇐⇒ ∃y:T. ((y ∈ a) ∧ (x = (f y) ∈ T')))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_member: (x ∈ l)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
true: True
, 
guard: {T}
Lemmas referenced : 
exists_wf, 
nat_wf, 
less_than_wf, 
length_wf, 
map_wf, 
equal_wf, 
select_wf, 
sq_stable__le, 
map-length, 
select-map, 
subtype_rel_list, 
top_wf, 
lelt_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
list_wf, 
map_length, 
map_select
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionEquality, 
intEquality
Latex:
\mforall{}[T,T':Type].    \mforall{}a:T  List.  \mforall{}x:T'.  \mforall{}f:T  {}\mrightarrow{}  T'.    ((x  \mmember{}  map(f;a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  a)  \mwedge{}  (x  =  (f  y))))
Date html generated:
2017_04_14-AM-08_41_24
Last ObjectModification:
2017_02_27-PM-03_31_33
Theory : list_0
Home
Index