Nuprl Lemma : member_map

[T,T':Type].  ∀a:T List. ∀x:T'. ∀f:T ⟶ T'.  ((x ∈ map(f;a)) ⇐⇒ ∃y:T. ((y ∈ a) ∧ (x (f y) ∈ T')))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_member: (x ∈ l) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] cand: c∧ B nat: uimplies: supposing a sq_stable: SqStable(P) squash: T so_apply: x[s] rev_implies:  Q exists: x:A. B[x] top: Top subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True guard: {T}
Lemmas referenced :  exists_wf nat_wf less_than_wf length_wf map_wf equal_wf select_wf sq_stable__le map-length select-map subtype_rel_list top_wf lelt_wf squash_wf true_wf iff_weakening_equal list_wf map_length map_select
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality setElimination rename because_Cache cumulativity hypothesisEquality functionExtensionality applyEquality independent_isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination dependent_pairFormation isect_memberEquality voidElimination voidEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry universeEquality functionEquality intEquality

Latex:
\mforall{}[T,T':Type].    \mforall{}a:T  List.  \mforall{}x:T'.  \mforall{}f:T  {}\mrightarrow{}  T'.    ((x  \mmember{}  map(f;a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  a)  \mwedge{}  (x  =  (f  y))))



Date html generated: 2017_04_14-AM-08_41_24
Last ObjectModification: 2017_02_27-PM-03_31_33

Theory : list_0


Home Index