Nuprl Lemma : l_exists_functionality
∀[T:Type]
  ∀L:T List. ∀[P,Q:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀x:{x:T| (x ∈ L)} . (P[x] ⇐⇒ Q[x])) ⇒ {(∃x∈L. P[x]) ⇐⇒ (∃x∈L. Q[x])})
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x]), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
l_exists: (∃x∈L. P[x]), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_wf, 
iff_wf, 
all_wf, 
l_exists_wf, 
sq_stable__le, 
list-subtype, 
l_member_wf, 
select_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
dependent_functionElimination, 
lemma_by_obid, 
isectElimination, 
setEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P,Q:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  \{(\mexists{}x\mmember{}L.  P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  Q[x])\})
Date html generated:
2016_05_14-AM-06_40_13
Last ObjectModification:
2016_01_14-PM-08_20_50
Theory : list_0
Home
Index