Nuprl Lemma : negate-poly-constraint_wf
∀[X:polynomial-constraints()]. (negate-poly-constraint(X) ∈ polynomial-constraints() List)
Proof
Definitions occuring in Statement : 
negate-poly-constraint: negate-poly-constraint(X)
, 
polynomial-constraints: polynomial-constraints()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
negate-poly-constraint: negate-poly-constraint(X)
, 
polynomial-constraints: polynomial-constraints()
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
iPolynomial_wf, 
list_wf, 
polynomial-constraints_wf, 
map_wf, 
nil_wf, 
cons_wf, 
minus-poly_wf, 
add-ipoly_wf, 
const-poly_wf, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
true_wf, 
nequal_wf, 
subtype_rel_product, 
subtype_rel_list, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
independent_pairEquality, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
addLevel, 
lambdaFormation, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
minusEquality, 
axiomEquality
Latex:
\mforall{}[X:polynomial-constraints()].  (negate-poly-constraint(X)  \mmember{}  polynomial-constraints()  List)
Date html generated:
2016_05_14-AM-07_08_49
Last ObjectModification:
2015_12_26-PM-01_07_49
Theory : omega
Home
Index