Nuprl Lemma : negate-poly-constraint_wf

[X:polynomial-constraints()]. (negate-poly-constraint(X) ∈ polynomial-constraints() List)


Proof




Definitions occuring in Statement :  negate-poly-constraint: negate-poly-constraint(X) polynomial-constraints: polynomial-constraints() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T negate-poly-constraint: negate-poly-constraint(X) polynomial-constraints: polynomial-constraints() int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf iPolynomial_wf list_wf polynomial-constraints_wf map_wf nil_wf cons_wf minus-poly_wf add-ipoly_wf const-poly_wf subtype_base_sq int_subtype_base equal_wf true_wf nequal_wf subtype_rel_product subtype_rel_list subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesis hypothesisEquality because_Cache lambdaEquality independent_pairEquality voidEquality dependent_set_memberEquality natural_numberEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination applyEquality minusEquality axiomEquality

Latex:
\mforall{}[X:polynomial-constraints()].  (negate-poly-constraint(X)  \mmember{}  polynomial-constraints()  List)



Date html generated: 2016_05_14-AM-07_08_49
Last ObjectModification: 2015_12_26-PM-01_07_49

Theory : omega


Home Index