Nuprl Lemma : l_exists_cons
∀[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ∀L:T List.  ((∃y∈[x / L]. P[y]) 
⇐⇒ P[x] ∨ (∃y∈L. P[y]))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
true: True
Lemmas referenced : 
l_member_wf, 
cons_member, 
cons_wf, 
l_exists_iff, 
l_exists_wf, 
subtype_rel_self, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
Error :productIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :unionIsType, 
Error :equalityIsType1, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
dependent_functionElimination, 
promote_hyp, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
functionExtensionality, 
cumulativity, 
Error :setIsType, 
unionElimination, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
instantiate, 
universeEquality, 
Error :functionIsType, 
hyp_replacement, 
equalitySymmetry, 
Error :dependent_set_memberEquality_alt, 
applyLambdaEquality, 
natural_numberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  \mforall{}L:T  List.    ((\mexists{}y\mmember{}[x  /  L].  P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mvee{}  (\mexists{}y\mmember{}L.  P[y]))
Date html generated:
2019_06_20-PM-00_41_13
Last ObjectModification:
2018_10_02-PM-06_05_00
Theory : list_0
Home
Index