Nuprl Lemma : l_exists_cons

[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ∀L:T List.  ((∃y∈[x L]. P[y]) ⇐⇒ P[x] ∨ (∃y∈L. P[y]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) cons: [a b] list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T or: P ∨ Q prop: so_apply: x[s] subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] cand: c∧ B true: True
Lemmas referenced :  l_member_wf cons_member cons_wf l_exists_iff l_exists_wf subtype_rel_self list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule Error :productIsType,  Error :inhabitedIsType,  hypothesisEquality Error :unionIsType,  Error :equalityIsType1,  Error :universeIsType,  introduction extract_by_obid isectElimination hypothesis applyEquality because_Cache independent_functionElimination Error :dependent_pairFormation_alt,  dependent_functionElimination promote_hyp Error :lambdaEquality_alt,  setElimination rename functionExtensionality cumulativity Error :setIsType,  unionElimination Error :inlFormation_alt,  Error :inrFormation_alt,  instantiate universeEquality Error :functionIsType,  hyp_replacement equalitySymmetry Error :dependent_set_memberEquality_alt,  applyLambdaEquality natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  \mforall{}L:T  List.    ((\mexists{}y\mmember{}[x  /  L].  P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mvee{}  (\mexists{}y\mmember{}L.  P[y]))



Date html generated: 2019_06_20-PM-00_41_13
Last ObjectModification: 2018_10_02-PM-06_05_00

Theory : list_0


Home Index