Nuprl Lemma : int_formual_prop_imp_lemma
∀y,x,f:Top.  (int_formula_prop(f;x "=>" y) ~ int_formula_prop(f;x) 
⇒ int_formula_prop(f;y))
Proof
Definitions occuring in Statement : 
int_formula_prop: int_formula_prop(f;fmla)
, 
intformimplies: left "=>" right
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_formula_prop: int_formula_prop(f;fmla)
, 
intformimplies: left "=>" right
, 
int_formula_ind: int_formula_ind
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}y,x,f:Top.    (int\_formula\_prop(f;x  "=>"  y)  \msim{}  int\_formula\_prop(f;x)  {}\mRightarrow{}  int\_formula\_prop(f;y))
Date html generated:
2016_05_14-AM-07_07_27
Last ObjectModification:
2015_12_26-PM-01_08_44
Theory : omega
Home
Index