Nuprl Lemma : l_exists_append

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L1,L2:T List.  ((∃x∈L1 L2. P[x]) ⇐⇒ (∃x∈L1. P[x]) ∨ (∃x∈L2. P[x]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) append: as bs list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] or: P ∨ Q so_apply: x[s] subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] cand: c∧ B
Lemmas referenced :  list_wf member_append l_member_wf append_wf subtype_rel_self l_exists_wf l_exists_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :functionIsType,  universeEquality independent_pairFormation productElimination Error :dependent_pairFormation_alt,  dependent_functionElimination independent_functionElimination promote_hyp sqequalRule Error :productIsType,  Error :unionIsType,  applyEquality because_Cache unionElimination Error :inlFormation_alt,  Error :inrFormation_alt,  instantiate Error :lambdaEquality_alt,  setElimination rename functionExtensionality cumulativity Error :setIsType

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L1,L2:T  List.    ((\mexists{}x\mmember{}L1  @  L2.  P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L1.  P[x])  \mvee{}  (\mexists{}x\mmember{}L2.  P[x]))



Date html generated: 2019_06_20-PM-00_41_32
Last ObjectModification: 2018_10_02-AM-10_06_10

Theory : list_0


Home Index