Nuprl Lemma : satisfiable_int_formula_wf

[fmla:int_formula()]. (satisfiable_int_formula(fmla) ∈ ℙ)


Proof




Definitions occuring in Statement :  satisfiable_int_formula: satisfiable_int_formula(fmla) int_formula: int_formula() uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf int_formula_prop_wf int_formula_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality intEquality lambdaEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[fmla:int\_formula()].  (satisfiable\_int\_formula(fmla)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_07_46
Last ObjectModification: 2015_12_26-PM-01_08_27

Theory : omega


Home Index