Nuprl Lemma : satisfiable_int_formula_wf
∀[fmla:int_formula()]. (satisfiable_int_formula(fmla) ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_formula: int_formula()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
int_formula_prop_wf, 
int_formula_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[fmla:int\_formula()].  (satisfiable\_int\_formula(fmla)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_07_46
Last ObjectModification:
2015_12_26-PM-01_08_27
Theory : omega
Home
Index