Nuprl Lemma : satisfiable-integer-problem_wf
∀[eqs,ineqs:ℤ List List].  (satisfiable(eqs;ineqs) ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
list_wf, 
satisfies-integer-problem_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[eqs,ineqs:\mBbbZ{}  List  List].    (satisfiable(eqs;ineqs)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_11_41
Last ObjectModification:
2015_12_26-PM-01_06_45
Theory : omega
Home
Index