Nuprl Lemma : satisfiable-integer-problem_wf

[eqs,ineqs:ℤ List List].  (satisfiable(eqs;ineqs) ∈ ℙ)


Proof




Definitions occuring in Statement :  satisfiable-integer-problem: satisfiable(eqs;ineqs) list: List uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T satisfiable-integer-problem: satisfiable(eqs;ineqs) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf list_wf satisfies-integer-problem_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[eqs,ineqs:\mBbbZ{}  List  List].    (satisfiable(eqs;ineqs)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_11_41
Last ObjectModification: 2015_12_26-PM-01_06_45

Theory : omega


Home Index