Nuprl Lemma : satisfies-integer-problem_wf

[eqs,ineqs:ℤ List List]. ∀[xs:ℤ List].  (satisfies-integer-problem(eqs;ineqs;xs) ∈ ℙ)


Proof




Definitions occuring in Statement :  satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) list: List uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  and_wf l_all_wf list_wf satisfies-integer-equality_wf l_member_wf satisfies-integer-inequality_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis hypothesisEquality lambdaEquality setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[eqs,ineqs:\mBbbZ{}  List  List].  \mforall{}[xs:\mBbbZ{}  List].    (satisfies-integer-problem(eqs;ineqs;xs)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_11_36
Last ObjectModification: 2015_12_26-PM-01_06_48

Theory : omega


Home Index