Nuprl Lemma : satisfies-integer-inequality_wf
∀[xs,as:ℤ List].  (xs ⋅ as ≥0 ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
ge: i ≥ j 
Lemmas referenced : 
list_wf, 
integer-dot-product_wf, 
ge_wf, 
less_than_wf, 
int_subtype_base, 
list_subtype_base, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[xs,as:\mBbbZ{}  List].    (xs  \mcdot{}  as  \mgeq{}0  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_56_17
Last ObjectModification:
2016_01_14-PM-08_44_37
Theory : omega
Home
Index