Nuprl Lemma : pcs-to-integer-problem_wf
∀[X:polynomial-constraints()]
  (pcs-to-integer-problem(X) ∈ ⋃n:ℕ.({L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List × ({L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List)))
Proof
Definitions occuring in Statement : 
pcs-to-integer-problem: pcs-to-integer-problem(X)
, 
polynomial-constraints: polynomial-constraints()
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pcs-to-integer-problem: pcs-to-integer-problem(X)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
polynomial-constraints: polynomial-constraints()
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
tunion: ⋃x:A.B[x]
, 
nat: ℕ
, 
subtract: n - m
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
iPolynomial: iPolynomial()
, 
iMonomial: iMonomial()
, 
pi1: fst(t)
, 
pcs-mon-vars: pcs-mon-vars(X)
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
ge: i ≥ j 
Lemmas referenced : 
reverse_wf, 
list_wf, 
pcs-mon-vars_wf, 
value-type-has-value, 
list-value-type, 
eager-map_wf, 
iPolynomial_wf, 
equal-wf-base, 
set-value-type, 
linearization_wf, 
evalall-reduce, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
add-associates, 
add-swap, 
length_wf, 
add-commutes, 
zero-add, 
length_wf_nat, 
equal-wf-base-T, 
equal_wf, 
polynomial-constraints_wf, 
list_subtype_base, 
member-reverse, 
nil_wf, 
member-pcs-mon-vars, 
or_wf, 
l_exists_wf, 
l_member_wf, 
pi1_wf, 
iMonomial_wf, 
pi2_wf, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
product_subtype_list, 
length_of_cons_lemma, 
subtract_wf, 
non_neg_length, 
nat_properties, 
decidable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
productElimination, 
sqequalRule, 
callbyvalueReduce, 
independent_isectElimination, 
setEquality, 
because_Cache, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
instantiate, 
cumulativity, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality, 
addEquality, 
setElimination, 
rename, 
axiomEquality, 
inlFormation, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality
Latex:
\mforall{}[X:polynomial-constraints()]
    (pcs-to-integer-problem(X)  \mmember{}  \mcup{}n:\mBbbN{}.(\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List
                                                                  \mtimes{}  (\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List)))
Date html generated:
2017_04_14-AM-09_04_40
Last ObjectModification:
2017_02_27-PM-03_44_14
Theory : omega
Home
Index