Nuprl Lemma : pcs-to-integer-problem_wf

[X:polynomial-constraints()]
  (pcs-to-integer-problem(X) ∈ ⋃n:ℕ.({L:ℤ List| ||L|| (n 1) ∈ ℤ}  List × ({L:ℤ List| ||L|| (n 1) ∈ ℤ}  List)))


Proof




Definitions occuring in Statement :  pcs-to-integer-problem: pcs-to-integer-problem(X) polynomial-constraints: polynomial-constraints() length: ||as|| list: List nat: tunion: x:A.B[x] uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcs-to-integer-problem: pcs-to-integer-problem(X) all: x:A. B[x] implies:  Q polynomial-constraints: polynomial-constraints() has-value: (a)↓ uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B tunion: x:A.B[x] nat: subtract: m top: Top sq_type: SQType(T) guard: {T} pi2: snd(t) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q iPolynomial: iPolynomial() iMonomial: iMonomial() pi1: fst(t) pcs-mon-vars: pcs-mon-vars(X) not: ¬A false: False cons: [a b] exists: x:A. B[x] decidable: Dec(P) ge: i ≥ 
Lemmas referenced :  reverse_wf list_wf pcs-mon-vars_wf value-type-has-value list-value-type eager-map_wf iPolynomial_wf equal-wf-base set-value-type linearization_wf evalall-reduce list-valueall-type set-valueall-type int-valueall-type subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base add-associates add-swap length_wf add-commutes zero-add length_wf_nat equal-wf-base-T equal_wf polynomial-constraints_wf list_subtype_base member-reverse nil_wf member-pcs-mon-vars or_wf l_exists_wf l_member_wf pi1_wf iMonomial_wf pi2_wf list-cases length_of_nil_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse product_subtype_list length_of_cons_lemma subtract_wf non_neg_length nat_properties decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis hypothesisEquality lambdaFormation productElimination sqequalRule callbyvalueReduce independent_isectElimination setEquality because_Cache lambdaEquality baseApply closedConclusion baseClosed applyEquality imageMemberEquality dependent_pairEquality independent_pairEquality instantiate cumulativity natural_numberEquality isect_memberEquality voidElimination voidEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination productEquality addEquality setElimination rename axiomEquality inlFormation unionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality dependent_pairFormation sqequalIntensionalEquality

Latex:
\mforall{}[X:polynomial-constraints()]
    (pcs-to-integer-problem(X)  \mmember{}  \mcup{}n:\mBbbN{}.(\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List
                                                                  \mtimes{}  (\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List)))



Date html generated: 2017_04_14-AM-09_04_40
Last ObjectModification: 2017_02_27-PM-03_44_14

Theory : omega


Home Index