Nuprl Lemma : linearization_wf

[p:iPolynomial()]. ∀[L:ℤ List List].  (linearization(p;L) ∈ {cs:ℤ List| ||cs|| ||L|| ∈ ℤ)


Proof




Definitions occuring in Statement :  linearization: linearization(p;L) iPolynomial: iPolynomial() length: ||as|| list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T linearization: linearization(p;L) subtype_rel: A ⊆B uimplies: supposing a prop:
Lemmas referenced :  map_length list_wf poly-coeff-of_wf map_wf equal-wf-base list_subtype_base int_subtype_base iPolynomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis because_Cache lambdaEquality hypothesisEquality dependent_set_memberEquality baseApply closedConclusion baseClosed applyEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[p:iPolynomial()].  \mforall{}[L:\mBbbZ{}  List  List].    (linearization(p;L)  \mmember{}  \{cs:\mBbbZ{}  List|  ||cs||  =  ||L||\}  )



Date html generated: 2017_04_14-AM-09_03_49
Last ObjectModification: 2017_02_27-PM-03_44_01

Theory : omega


Home Index