Nuprl Lemma : linearization_wf
∀[p:iPolynomial()]. ∀[L:ℤ List List].  (linearization(p;L) ∈ {cs:ℤ List| ||cs|| = ||L|| ∈ ℤ} )
Proof
Definitions occuring in Statement : 
linearization: linearization(p;L)
, 
iPolynomial: iPolynomial()
, 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
linearization: linearization(p;L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
map_length, 
list_wf, 
poly-coeff-of_wf, 
map_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
iPolynomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[p:iPolynomial()].  \mforall{}[L:\mBbbZ{}  List  List].    (linearization(p;L)  \mmember{}  \{cs:\mBbbZ{}  List|  ||cs||  =  ||L||\}  )
Date html generated:
2017_04_14-AM-09_03_49
Last ObjectModification:
2017_02_27-PM-03_44_01
Theory : omega
Home
Index