Nuprl Lemma : poly-coeff-of_wf
∀[vs:ℤ List]. ∀[p:iPolynomial()]. (poly-coeff-of(vs;p) ∈ ℤ)
Proof
Definitions occuring in Statement :
poly-coeff-of: poly-coeff-of(vs;p)
,
iPolynomial: iPolynomial()
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
poly-coeff-of: poly-coeff-of(vs;p)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
iMonomial: iMonomial()
,
int_nzero: ℤ-o
,
so_apply: x[s1;s2;s3]
,
iPolynomial: iPolynomial()
Lemmas referenced :
list_ind_wf,
iMonomial_wf,
ifthenelse_wf,
intlex_wf,
list_wf,
iPolynomial_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
intEquality,
natural_numberEquality,
lambdaEquality,
spreadEquality,
hypothesisEquality,
setElimination,
rename,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[vs:\mBbbZ{} List]. \mforall{}[p:iPolynomial()]. (poly-coeff-of(vs;p) \mmember{} \mBbbZ{})
Date html generated:
2016_05_14-AM-07_10_38
Last ObjectModification:
2015_12_26-PM-01_07_00
Theory : omega
Home
Index