Nuprl Lemma : reverse_wf

[T:Type]. ∀[as:T List].  (rev(as) ∈ List)


Proof




Definitions occuring in Statement :  reverse: rev(as) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as)
Lemmas referenced :  rev-append_wf nil_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].    (rev(as)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_29_45
Last ObjectModification: 2015_12_26-PM-00_40_00

Theory : list_0


Home Index