Nuprl Lemma : pcs-mon-vars_wf
∀[X:polynomial-constraints()]. (pcs-mon-vars(X) ∈ ℤ List List)
Proof
Definitions occuring in Statement : 
pcs-mon-vars: pcs-mon-vars(X), 
polynomial-constraints: polynomial-constraints(), 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pcs-mon-vars: pcs-mon-vars(X), 
polynomial-constraints: polynomial-constraints(), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
iPolynomial: iPolynomial(), 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
guard: {T}, 
all: ∀x:A. B[x], 
so_apply: x[s], 
iMonomial: iMonomial(), 
prop: ℙ, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
polynomial-constraints_wf, 
polynomial-mon-vars_wf, 
nil_wf, 
cons_wf, 
subtype_rel_self, 
sorted_wf, 
int_nzero_wf, 
subtype_rel_product, 
le_weakening2, 
less_than_transitivity2, 
sq_stable__le, 
select_wf, 
imonomial-less_wf, 
length_wf, 
int_seg_wf, 
all_wf, 
iMonomial_wf, 
subtype_rel_set, 
iPolynomial_wf, 
subtype_rel_list, 
top_wf, 
list_wf, 
list_accum_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
productEquality, 
hypothesis, 
intEquality, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
setEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:polynomial-constraints()].  (pcs-mon-vars(X)  \mmember{}  \mBbbZ{}  List  List)
 Date html generated: 
2016_05_14-AM-07_10_11
 Last ObjectModification: 
2016_01_14-PM-08_41_01
Theory : omega
Home
Index