Nuprl Lemma : pcs-mon-vars_wf

[X:polynomial-constraints()]. (pcs-mon-vars(X) ∈ ℤ List List)


Proof




Definitions occuring in Statement :  pcs-mon-vars: pcs-mon-vars(X) polynomial-constraints: polynomial-constraints() list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcs-mon-vars: pcs-mon-vars(X) polynomial-constraints: polynomial-constraints() subtype_rel: A ⊆B uimplies: supposing a iPolynomial: iPolynomial() so_lambda: λ2x.t[x] int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} all: x:A. B[x] so_apply: x[s] iMonomial: iMonomial() prop: top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  polynomial-constraints_wf polynomial-mon-vars_wf nil_wf cons_wf subtype_rel_self sorted_wf int_nzero_wf subtype_rel_product le_weakening2 less_than_transitivity2 sq_stable__le select_wf imonomial-less_wf length_wf int_seg_wf all_wf iMonomial_wf subtype_rel_set iPolynomial_wf subtype_rel_list top_wf list_wf list_accum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination productEquality hypothesis intEquality because_Cache hypothesisEquality applyEquality independent_isectElimination lambdaEquality natural_numberEquality setElimination rename independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination setEquality isect_memberEquality voidElimination voidEquality lambdaFormation axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:polynomial-constraints()].  (pcs-mon-vars(X)  \mmember{}  \mBbbZ{}  List  List)



Date html generated: 2016_05_14-AM-07_10_11
Last ObjectModification: 2016_01_14-PM-08_41_01

Theory : omega


Home Index