Nuprl Lemma : subtype_rel_set

[A,B:Type]. ∀[P:A ⟶ ℙ].  {a:A| P[a]}  ⊆supposing A ⊆B


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality setElimination thin rename hypothesisEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule setEquality because_Cache axiomEquality lemma_by_obid isectElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  B  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_13-PM-03_18_45
Last ObjectModification: 2015_12_26-AM-09_08_20

Theory : subtype_0


Home Index