Nuprl Lemma : subtype_rel_set
∀[A,B:Type]. ∀[P:A ⟶ ℙ].  {a:A| P[a]}  ⊆r B supposing A ⊆r B
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
setEquality, 
because_Cache, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  B  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_13-PM-03_18_45
Last ObjectModification:
2015_12_26-AM-09_08_20
Theory : subtype_0
Home
Index