Step
*
of Lemma
pcs-to-integer-problem_wf
∀[X:polynomial-constraints()]
(pcs-to-integer-problem(X) ∈ ⋃n:ℕ.({L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List × ({L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List)))
BY
{ ((D 0 THENA Auto)
THEN Unfold `pcs-to-integer-problem` 0
THEN (GenConclTerm ⌜rev(pcs-mon-vars(X))⌝⋅ THENA Auto)
THEN D 1
THEN (CallByValueReduce 0 THENA Auto)
THEN Reduce 0
THEN (GenConcl ⌜eager-map(λp.linearization(p;v);X1) = L1 ∈ ({cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List)⌝⋅ THENA Auto)
THEN (GenConcl ⌜eager-map(λp.linearization(p;v);X2) = L2 ∈ ({cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List)⌝⋅ THENA Auto)
THEN RWO "evalall-reduce" 0
THEN Auto
THEN MemTypeCDUnion ⌜||v|| - 1⌝⋅
THEN Auto) }
1
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. v : ℤ List List
4. rev(pcs-mon-vars(<X1, X2>)) = v ∈ (ℤ List List)
5. L1 : {cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List
6. eager-map(λp.linearization(p;v);X1) = L1 ∈ ({cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List)
7. L2 : {cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List
8. eager-map(λp.linearization(p;v);X2) = L2 ∈ ({cs:ℤ List| ||cs|| = ||v|| ∈ ℤ} List)
⊢ ||v|| - 1 ∈ ℕ
Latex:
Latex:
\mforall{}[X:polynomial-constraints()]
(pcs-to-integer-problem(X) \mmember{} \mcup{}n:\mBbbN{}.(\{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
\mtimes{} (\{L:\mBbbZ{} List| ||L|| = (n + 1)\} List)))
By
Latex:
((D 0 THENA Auto)
THEN Unfold `pcs-to-integer-problem` 0
THEN (GenConclTerm \mkleeneopen{}rev(pcs-mon-vars(X))\mkleeneclose{}\mcdot{} THENA Auto)
THEN D 1
THEN (CallByValueReduce 0 THENA Auto)
THEN Reduce 0
THEN (GenConcl \mkleeneopen{}eager-map(\mlambda{}p.linearization(p;v);X1) = L1\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}eager-map(\mlambda{}p.linearization(p;v);X2) = L2\mkleeneclose{}\mcdot{} THENA Auto)
THEN RWO "evalall-reduce" 0
THEN Auto
THEN MemTypeCDUnion \mkleeneopen{}||v|| - 1\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index