Nuprl Lemma : member-implies-null-eq-bfalse

[T:Type]. ∀[L:T List]. ∀[x:T].  null(L) ff supposing (x ∈ L)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) null: null(as) list: List bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False all: x:A. B[x] or: P ∨ Q cons: [a b] top: Top prop: not: ¬A rev_implies:  Q uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  iff_imp_equal_bool null_wf bfalse_wf null_nil_lemma btrue_wf list-cases nil_member product_subtype_list null_cons_lemma and_wf equal_wf list_wf btrue_neq_bfalse nil_wf false_wf assert_of_null assert_wf iff_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination independent_pairFormation lambdaFormation sqequalRule dependent_functionElimination unionElimination productElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename setEquality addLevel impliesFunctionality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    null(L)  =  ff  supposing  (x  \mmember{}  L)



Date html generated: 2016_05_14-AM-06_38_46
Last ObjectModification: 2015_12_26-PM-00_32_12

Theory : list_0


Home Index