Nuprl Lemma : member-pcs-mon-vars
∀X:polynomial-constraints(). ∀vs:ℤ List.
  ((vs ∈ pcs-mon-vars(X))
  
⇐⇒ (vs = [] ∈ (ℤ List))
      ∨ (∃p∈fst(X). (∃m∈p. vs = (snd(m)) ∈ (ℤ List)))
      ∨ (∃p∈snd(X). (∃m∈p. vs = (snd(m)) ∈ (ℤ List))))
Proof
Definitions occuring in Statement : 
pcs-mon-vars: pcs-mon-vars(X)
, 
polynomial-constraints: polynomial-constraints()
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
nil: []
, 
list: T List
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
polynomial-constraints: polynomial-constraints()
, 
pcs-mon-vars: pcs-mon-vars(X)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iPolynomial: iPolynomial()
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_apply: x[s]
, 
iMonomial: iMonomial()
, 
prop: ℙ
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
Lemmas referenced : 
list_wf, 
polynomial-constraints_wf, 
list_induction, 
iPolynomial_wf, 
all_wf, 
iff_wf, 
l_member_wf, 
list_accum_wf, 
top_wf, 
subtype_rel_list, 
subtype_rel_set, 
iMonomial_wf, 
int_seg_wf, 
length_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
polynomial-mon-vars_wf, 
or_wf, 
l_exists_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
false_wf, 
l_exists_nil, 
l_exists_wf_nil, 
member-polynomial-mon-vars, 
l_exists_cons, 
cons_wf, 
equal-wf-base, 
nil_wf, 
member_singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
hypothesisEquality, 
productEquality, 
applyEquality, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
setEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
inlFormation, 
unionElimination, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
orFunctionality, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}X:polynomial-constraints().  \mforall{}vs:\mBbbZ{}  List.
    ((vs  \mmember{}  pcs-mon-vars(X))
    \mLeftarrow{}{}\mRightarrow{}  (vs  =  [])  \mvee{}  (\mexists{}p\mmember{}fst(X).  (\mexists{}m\mmember{}p.  vs  =  (snd(m))))  \mvee{}  (\mexists{}p\mmember{}snd(X).  (\mexists{}m\mmember{}p.  vs  =  (snd(m)))))
Date html generated:
2017_04_14-AM-09_03_31
Last ObjectModification:
2017_02_27-PM-03_44_58
Theory : omega
Home
Index