Nuprl Lemma : member-pcs-mon-vars

X:polynomial-constraints(). ∀vs:ℤ List.
  ((vs ∈ pcs-mon-vars(X))
  ⇐⇒ (vs [] ∈ (ℤ List))
      ∨ (∃p∈fst(X). (∃m∈p. vs (snd(m)) ∈ (ℤ List)))
      ∨ (∃p∈snd(X). (∃m∈p. vs (snd(m)) ∈ (ℤ List))))


Proof




Definitions occuring in Statement :  pcs-mon-vars: pcs-mon-vars(X) polynomial-constraints: polynomial-constraints() l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List pi1: fst(t) pi2: snd(t) all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] polynomial-constraints: polynomial-constraints() pcs-mon-vars: pcs-mon-vars(X) pi1: fst(t) pi2: snd(t) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a iPolynomial: iPolynomial() int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] iMonomial: iMonomial() prop: top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q false: False
Lemmas referenced :  list_wf polynomial-constraints_wf list_induction iPolynomial_wf all_wf iff_wf l_member_wf list_accum_wf top_wf subtype_rel_list subtype_rel_set iMonomial_wf int_seg_wf length_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self polynomial-mon-vars_wf or_wf l_exists_wf equal-wf-base-T list_subtype_base int_subtype_base list_accum_nil_lemma list_accum_cons_lemma false_wf l_exists_nil l_exists_wf_nil member-polynomial-mon-vars l_exists_cons cons_wf equal-wf-base nil_wf member_singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination intEquality hypothesis lambdaEquality because_Cache hypothesisEquality productEquality applyEquality independent_isectElimination natural_numberEquality setElimination rename independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination setEquality isect_memberEquality voidElimination voidEquality independent_pairFormation inlFormation unionElimination addLevel allFunctionality impliesFunctionality orFunctionality inrFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}X:polynomial-constraints().  \mforall{}vs:\mBbbZ{}  List.
    ((vs  \mmember{}  pcs-mon-vars(X))
    \mLeftarrow{}{}\mRightarrow{}  (vs  =  [])  \mvee{}  (\mexists{}p\mmember{}fst(X).  (\mexists{}m\mmember{}p.  vs  =  (snd(m))))  \mvee{}  (\mexists{}p\mmember{}snd(X).  (\mexists{}m\mmember{}p.  vs  =  (snd(m)))))



Date html generated: 2017_04_14-AM-09_03_31
Last ObjectModification: 2017_02_27-PM-03_44_58

Theory : omega


Home Index