Nuprl Lemma : member_singleton
∀[T:Type]. ∀a,x:T.  ((x ∈ [a]) ⇐⇒ x = a ∈ T)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
cons: [a / b], 
nil: [], 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_member: (x ∈ l), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
le: A ≤ B, 
sq_type: SQType(T), 
guard: {T}, 
select: L[n], 
cons: [a / b], 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
not: ¬A, 
less_than': less_than'(a;b), 
true: True, 
false: False, 
subtract: n - m, 
less_than: a < b
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma, 
exists_wf, 
nat_wf, 
less_than_wf, 
equal_wf, 
select_wf, 
cons_wf, 
nil_wf, 
sq_stable__le, 
length-singleton, 
decidable__assert, 
eq_int_wf, 
assert_of_eq_int, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
neg_assert_of_eq_int, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less-iff-le, 
le-add-cancel2, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
isectElimination, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality, 
unionElimination, 
instantiate, 
intEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
minusEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}a,x:T.    ((x  \mmember{}  [a])  \mLeftarrow{}{}\mRightarrow{}  x  =  a)
Date html generated:
2017_04_14-AM-08_37_24
Last ObjectModification:
2017_02_27-PM-03_29_24
Theory : list_0
Home
Index