Nuprl Lemma : member-polynomial-mon-vars

p:iMonomial() List. ∀L:ℤ List List. ∀vs:ℤ List.
  ((vs ∈ polynomial-mon-vars(L;p)) ⇐⇒ (vs ∈ L) ∨ (∃m∈p. vs (snd(m)) ∈ (ℤ List)))


Proof




Definitions occuring in Statement :  polynomial-mon-vars: polynomial-mon-vars(init;p) iMonomial: iMonomial() l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List pi2: snd(t) all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q int: equal: t ∈ T
Definitions unfolded in proof :  polynomial-mon-vars: polynomial-mon-vars(init;p) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] iMonomial: iMonomial() so_apply: x[s1;s2] prop: subtype_rel: A ⊆B uimplies: supposing a pi2: snd(t) so_apply: x[s] implies:  Q top: Top iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q rev_implies:  Q false: False guard: {T}
Lemmas referenced :  list_induction iMonomial_wf all_wf list_wf iff_wf l_member_wf list_accum_wf insert_wf list-deq_wf int-deq_wf or_wf l_exists_wf equal-wf-base-T list_subtype_base int_subtype_base list_accum_nil_lemma false_wf l_exists_nil l_exists_wf_nil list_accum_cons_lemma l_exists_cons cons_wf member-insert equal_wf equal-wf-base set_subtype_base sorted_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesis lambdaEquality intEquality because_Cache hypothesisEquality productElimination setElimination rename applyEquality independent_isectElimination setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation inlFormation unionElimination addLevel allFunctionality impliesFunctionality orFunctionality spreadEquality levelHypothesis promote_hyp inrFormation

Latex:
\mforall{}p:iMonomial()  List.  \mforall{}L:\mBbbZ{}  List  List.  \mforall{}vs:\mBbbZ{}  List.
    ((vs  \mmember{}  polynomial-mon-vars(L;p))  \mLeftarrow{}{}\mRightarrow{}  (vs  \mmember{}  L)  \mvee{}  (\mexists{}m\mmember{}p.  vs  =  (snd(m))))



Date html generated: 2016_05_14-AM-07_10_02
Last ObjectModification: 2015_12_26-PM-01_07_30

Theory : omega


Home Index