Nuprl Lemma : list-deq_wf

[A:Type]. ∀[eq:EqDecider(A)].  (list-deq(eq) ∈ EqDecider(A List))


Proof




Definitions occuring in Statement :  list-deq: list-deq(eq) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q assert: b ifthenelse: if then else fi  list-deq: list-deq(eq) list_ind: list_ind nil: [] it: null: null(as) btrue: tt true: True cons: [a b] top: Top colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] not: ¬A so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bfalse: ff le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B cand: c∧ B decidable: Dec(P) uiff: uiff(P;Q) band: p ∧b q eqof: eqof(d)
Lemmas referenced :  list-deq_wf1 nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than assert_witness list-cases nil_wf istype-assert product_subtype_list colength-cons-not-zero istype-void subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma null_nil_lemma btrue_wf length_wf length_of_nil_lemma null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse cons_wf list_ind_nil_lemma colength_wf_list le_weakening2 istype-le istype-false sq_stable__le add-associates istype-int add-commutes add-swap zero-add length_of_cons_lemma list_ind_cons_lemma istype-nat deq_wf istype-universe reduce_hd_cons_lemma hd_wf cons_neq_nil length_wf_nat decidable__le not-ge-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le add-zero le-add-cancel2 assert_wf eqof_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert band_wf equal_wf safe-assert-deq iff_weakening_equal iff_transitivity iff_weakening_uiff assert_of_band reduce_tl_cons_lemma tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :dependent_set_memberEquality_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache hypothesis Error :lambdaFormation_alt,  intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination productElimination independent_pairEquality applyEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  axiomEquality unionElimination independent_pairFormation Error :equalityIstype,  baseClosed sqequalBase equalitySymmetry promote_hyp hypothesis_subsumption Error :isect_memberEquality_alt,  instantiate cumulativity intEquality closedConclusion equalityTransitivity Error :productIsType,  applyLambdaEquality imageElimination imageMemberEquality minusEquality baseApply Error :functionIsType,  Error :isectIsTypeImplies,  universeEquality addEquality productEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].    (list-deq(eq)  \mmember{}  EqDecider(A  List))



Date html generated: 2019_06_20-PM-00_44_02
Last ObjectModification: 2018_11_26-AM-00_13_37

Theory : list_0


Home Index