Nuprl Lemma : list-deq_wf
∀[A:Type]. ∀[eq:EqDecider(A)].  (list-deq(eq) ∈ EqDecider(A List))
Proof
Definitions occuring in Statement : 
list-deq: list-deq(eq), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
list-deq: list-deq(eq), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
null: null(as), 
btrue: tt, 
true: True, 
cons: [a / b], 
top: Top, 
colength: colength(L), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
not: ¬A, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
bfalse: ff, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
sq_stable: SqStable(P), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
decidable: Dec(P), 
uiff: uiff(P;Q), 
band: p ∧b q, 
eqof: eqof(d)
Lemmas referenced : 
list-deq_wf1, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
assert_witness, 
list-cases, 
nil_wf, 
istype-assert, 
product_subtype_list, 
colength-cons-not-zero, 
istype-void, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
spread_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
length_wf, 
length_of_nil_lemma, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_wf, 
list_ind_nil_lemma, 
colength_wf_list, 
le_weakening2, 
istype-le, 
istype-false, 
sq_stable__le, 
add-associates, 
istype-int, 
add-commutes, 
add-swap, 
zero-add, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
istype-nat, 
deq_wf, 
istype-universe, 
reduce_hd_cons_lemma, 
hd_wf, 
cons_neq_nil, 
length_wf_nat, 
decidable__le, 
not-ge-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
assert_wf, 
eqof_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
equal_wf, 
safe-assert-deq, 
iff_weakening_equal, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
reduce_tl_cons_lemma, 
tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
Error :lambdaFormation_alt, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
applyEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
axiomEquality, 
unionElimination, 
independent_pairFormation, 
Error :equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
Error :isect_memberEquality_alt, 
instantiate, 
cumulativity, 
intEquality, 
closedConclusion, 
equalityTransitivity, 
Error :productIsType, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
minusEquality, 
baseApply, 
Error :functionIsType, 
Error :isectIsTypeImplies, 
universeEquality, 
addEquality, 
productEquality, 
hyp_replacement
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].    (list-deq(eq)  \mmember{}  EqDecider(A  List))
Date html generated:
2019_06_20-PM-00_44_02
Last ObjectModification:
2018_11_26-AM-00_13_37
Theory : list_0
Home
Index