Nuprl Lemma : cons_neq_nil
∀[T:Type]. ∀[h:T]. ∀[t:T List]. (¬([h / t] = [] ∈ (T List)))
Proof
Definitions occuring in Statement :
cons: [a / b]
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
all: ∀x:A. B[x]
,
top: Top
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
true: True
Lemmas referenced :
equal-wf-T-base,
list_wf,
cons_wf,
list_ind_wf,
list_ind_cons_lemma,
list_ind_nil_lemma,
subtype_base_sq,
int_subtype_base
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
baseClosed,
because_Cache,
Error :universeIsType,
universeEquality,
sqequalRule,
Error :isect_memberFormation_alt,
lambdaFormation,
lambdaEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
applyLambdaEquality,
intEquality,
natural_numberEquality,
voidEquality,
instantiate,
cumulativity,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}[h:T]. \mforall{}[t:T List]. (\mneg{}([h / t] = []))
Date html generated:
2019_06_20-PM-00_38_46
Last ObjectModification:
2018_09_26-PM-02_07_28
Theory : list_0
Home
Index