Nuprl Lemma : deq_wf

[T:Type]. (EqDecider(T) ∈ Type)


Proof




Definitions occuring in Statement :  deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop:
Lemmas referenced :  bool_wf all_wf iff_wf equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality functionEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (EqDecider(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_06_15
Last ObjectModification: 2015_12_26-AM-11_46_52

Theory : equality!deciders


Home Index