Nuprl Lemma : deq_wf
∀[T:Type]. (EqDecider(T) ∈ Type)
Proof
Definitions occuring in Statement : 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
bool_wf, 
all_wf, 
iff_wf, 
equal_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
functionEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (EqDecider(T)  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_06_15
Last ObjectModification:
2015_12_26-AM-11_46_52
Theory : equality!deciders
Home
Index