Nuprl Lemma : bool_cases
∀b:𝔹. (b = tt ∨ b = ff)
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
member: t ∈ T
, 
it: ⋅
, 
btrue: tt
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
bfalse: ff
Lemmas referenced : 
btrue_wf, 
equal-wf-base, 
bool_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
Error :inlFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :universeIsType, 
isectElimination, 
baseClosed, 
Error :inrFormation_alt, 
because_Cache
Latex:
\mforall{}b:\mBbbB{}.  (b  =  tt  \mvee{}  b  =  ff)
Date html generated:
2019_06_20-AM-11_19_51
Last ObjectModification:
2018_09_27-PM-06_23_29
Theory : basic_types
Home
Index