Nuprl Lemma : bool_cases

b:𝔹(b tt ∨ ff)


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 all: x:A. B[x] or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] bool: 𝔹 unit: Unit member: t ∈ T it: btrue: tt or: P ∨ Q uall: [x:A]. B[x] prop: bfalse: ff
Lemmas referenced :  btrue_wf equal-wf-base bool_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution unionElimination thin equalityElimination Error :inlFormation_alt,  cut introduction extract_by_obid hypothesis Error :universeIsType,  isectElimination baseClosed Error :inrFormation_alt,  because_Cache

Latex:
\mforall{}b:\mBbbB{}.  (b  =  tt  \mvee{}  b  =  ff)



Date html generated: 2019_06_20-AM-11_19_51
Last ObjectModification: 2018_09_27-PM-06_23_29

Theory : basic_types


Home Index