Nuprl Lemma : satisfiable-full-omega-tt

[fmla:int_formula()]. ↑isl(full-omega(fmla)) supposing satisfiable_int_formula(fmla)


Proof




Definitions occuring in Statement :  full-omega: full-omega(fmla) satisfiable_int_formula: satisfiable_int_formula(fmla) int_formula: int_formula() assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  isl: isl(x) true: True subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A
Lemmas referenced :  full-omega_wf set_wf bool_wf equal-wf-T-base not_wf satisfiable_int_formula_wf eqtt_to_assert assert_witness isl_wf unit_wf2 btrue_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf int_formula_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality baseClosed lambdaFormation setElimination rename unionElimination equalityElimination productElimination independent_isectElimination natural_numberEquality applyEquality independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry because_Cache voidElimination isect_memberEquality setEquality

Latex:
\mforall{}[fmla:int\_formula()].  \muparrow{}isl(full-omega(fmla))  supposing  satisfiable\_int\_formula(fmla)



Date html generated: 2017_09_29-PM-05_56_22
Last ObjectModification: 2017_07_26-PM-01_47_04

Theory : omega


Home Index