Nuprl Lemma : satisfiable-full-omega-tt
∀[fmla:int_formula()]. ↑isl(full-omega(fmla)) supposing satisfiable_int_formula(fmla)
Proof
Definitions occuring in Statement : 
full-omega: full-omega(fmla), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
int_formula: int_formula(), 
assert: ↑b, 
isl: isl(x), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
true: True, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
not: ¬A
Lemmas referenced : 
full-omega_wf, 
set_wf, 
bool_wf, 
equal-wf-T-base, 
not_wf, 
satisfiable_int_formula_wf, 
eqtt_to_assert, 
assert_witness, 
isl_wf, 
unit_wf2, 
btrue_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
int_formula_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
baseClosed, 
lambdaFormation, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
voidElimination, 
isect_memberEquality, 
setEquality
Latex:
\mforall{}[fmla:int\_formula()].  \muparrow{}isl(full-omega(fmla))  supposing  satisfiable\_int\_formula(fmla)
Date html generated:
2017_09_29-PM-05_56_22
Last ObjectModification:
2017_07_26-PM-01_47_04
Theory : omega
Home
Index