Nuprl Lemma : isl_wf
∀[A,B:Type]. ∀[x:A + B].  (isl(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
isl: isl(x)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
lambdaFormation, 
unionElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A  +  B].    (isl(x)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_19_53
Last ObjectModification:
2018_08_21-PM-01_52_33
Theory : union
Home
Index