Nuprl Lemma : perm_properties

T:Type. ∀p:Perm(T).  InvFuns(T;T;p.f;p.b)


Proof




Definitions occuring in Statement :  perm: Perm(T) perm_b: p.b perm_f: p.f inv_funs: InvFuns(A;B;f;g) all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] perm: Perm(T) uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  perm_wf perm_b_wf perm_f_wf sq_stable__inv_funs
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination hypothesisEquality because_Cache dependent_functionElimination hypothesis independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).    InvFuns(T;T;p.f;p.b)



Date html generated: 2016_05_16-AM-07_28_26
Last ObjectModification: 2016_01_16-PM-10_06_25

Theory : perms_1


Home Index