Nuprl Lemma : inv_perm_wf

T:Type. ∀p:Perm(T).  (inv_perm(p) ∈ Perm(T))


Proof




Definitions occuring in Statement :  inv_perm: inv_perm(p) perm: Perm(T) all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T perm: Perm(T) inv_perm: inv_perm(p) uall: [x:A]. B[x] prop: mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) inv_funs: InvFuns(A;B;f;g) and: P ∧ Q cand: c∧ B
Lemmas referenced :  perm_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf mk_perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid dependent_functionElimination thin hypothesisEquality universeEquality setElimination rename dependent_set_memberEquality_alt isectElimination sqequalRule productElimination independent_pairFormation

Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).    (inv\_perm(p)  \mmember{}  Perm(T))



Date html generated: 2019_10_16-PM-00_58_49
Last ObjectModification: 2018_10_08-AM-09_46_32

Theory : perms_1


Home Index