Nuprl Lemma : mk_perm_wf

T:Type. ∀f,b:T ⟶ T.  (mk_perm(f;b) ∈ perm_sig(T))


Proof




Definitions occuring in Statement :  mk_perm: mk_perm(f;b) perm_sig: perm_sig(T) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mk_perm: mk_perm(f;b) perm_sig: perm_sig(T) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut dependent_pairEquality_alt hypothesisEquality inhabitedIsType sqequalHypSubstitution hypothesis functionIsType introduction extract_by_obid isectElimination thin universeIsType universeEquality

Latex:
\mforall{}T:Type.  \mforall{}f,b:T  {}\mrightarrow{}  T.    (mk\_perm(f;b)  \mmember{}  perm\_sig(T))



Date html generated: 2019_10_16-PM-00_58_39
Last ObjectModification: 2018_10_08-AM-09_49_00

Theory : perms_1


Home Index