Nuprl Lemma : mk_perm_wf
∀T:Type. ∀f,b:T ⟶ T.  (mk_perm(f;b) ∈ perm_sig(T))
Proof
Definitions occuring in Statement : 
mk_perm: mk_perm(f;b)
, 
perm_sig: perm_sig(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
mk_perm: mk_perm(f;b)
, 
perm_sig: perm_sig(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
dependent_pairEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
sqequalHypSubstitution, 
hypothesis, 
functionIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
universeIsType, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}f,b:T  {}\mrightarrow{}  T.    (mk\_perm(f;b)  \mmember{}  perm\_sig(T))
Date html generated:
2019_10_16-PM-00_58_39
Last ObjectModification:
2018_10_08-AM-09_49_00
Theory : perms_1
Home
Index