Nuprl Lemma : permr_transitivity

T:Type. ∀as,bs,cs:T List.  ((as ≡(T) bs)  (bs ≡(T) cs)  (as ≡(T) cs))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q permr: as ≡(T) bs member: t ∈ T prop: uall: [x:A]. B[x] cand: c∧ B exists: x:A. B[x] sym_grp: Sym(n) subtype_rel: A ⊆B uimplies: supposing a squash: T true: True and: P ∧ Q perm: Perm(T) ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top comp_perm: comp_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) compose: g le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q
Lemmas referenced :  permr_wf list_wf comp_perm_wf int_seg_wf length_wf subtype_rel-equal perm_wf squash_wf true_wf istype-int istype-universe select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma equal_wf int_seg_subtype istype-false le_weakening subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution universeIsType cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType isectElimination universeEquality productElimination equalityTransitivity independent_pairFormation rename dependent_pairFormation_alt natural_numberEquality applyEquality independent_isectElimination lambdaEquality_alt imageElimination equalitySymmetry sqequalRule imageMemberEquality baseClosed dependent_set_memberEquality_alt productIsType equalityIsType1 applyLambdaEquality setElimination functionIsType because_Cache unionElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination instantiate

Latex:
\mforall{}T:Type.  \mforall{}as,bs,cs:T  List.    ((as  \mequiv{}(T)  bs)  {}\mRightarrow{}  (bs  \mequiv{}(T)  cs)  {}\mRightarrow{}  (as  \mequiv{}(T)  cs))



Date html generated: 2019_10_16-PM-01_00_29
Last ObjectModification: 2018_10_08-AM-11_53_02

Theory : perms_2


Home Index