Nuprl Lemma : comp_perm_wf

T:Type. ∀p,q:Perm(T).  (p q ∈ Perm(T))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm perm: Perm(T) all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T comp_perm: comp_perm uall: [x:A]. B[x] perm: Perm(T) implies:  Q inv_funs: InvFuns(A;B;f;g) and: P ∧ Q true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  mk_perm_wf_a compose_wf perm_f_wf perm_b_wf perm_wf perm_properties equal_wf istype-universe comp_id_l iff_weakening_equal squash_wf true_wf comp_assoc subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination because_Cache setElimination rename hypothesis independent_functionElimination inhabitedIsType universeIsType universeEquality productElimination independent_pairFormation functionEquality natural_numberEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality_alt imageElimination functionIsType imageMemberEquality baseClosed independent_isectElimination instantiate promote_hyp

Latex:
\mforall{}T:Type.  \mforall{}p,q:Perm(T).    (p  O  q  \mmember{}  Perm(T))



Date html generated: 2019_10_16-PM-00_58_52
Last ObjectModification: 2018_10_08-AM-09_46_30

Theory : perms_1


Home Index