Nuprl Lemma : mk_perm_wf_a

T:Type. ∀f,b:T ⟶ T.  (InvFuns(T;T;f;b)  (mk_perm(f;b) ∈ Perm(T)))


Proof




Definitions occuring in Statement :  mk_perm: mk_perm(f;b) perm: Perm(T) inv_funs: InvFuns(A;B;f;g) all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T perm_f: p.f pi1: fst(t) mk_perm: mk_perm(f;b) perm_b: p.b pi2: snd(t) perm: Perm(T) uall: [x:A]. B[x] prop:
Lemmas referenced :  mk_perm_wf inv_funs_wf perm_f_wf perm_b_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule sqequalHypSubstitution hypothesis dependent_set_memberEquality_alt introduction extract_by_obid dependent_functionElimination thin hypothesisEquality universeIsType isectElimination inhabitedIsType functionIsType universeEquality

Latex:
\mforall{}T:Type.  \mforall{}f,b:T  {}\mrightarrow{}  T.    (InvFuns(T;T;f;b)  {}\mRightarrow{}  (mk\_perm(f;b)  \mmember{}  Perm(T)))



Date html generated: 2019_10_16-PM-00_58_42
Last ObjectModification: 2018_10_08-AM-09_48_59

Theory : perms_1


Home Index