Nuprl Lemma : mk_perm_wf_a
∀T:Type. ∀f,b:T ⟶ T.  (InvFuns(T;T;f;b) 
⇒ (mk_perm(f;b) ∈ Perm(T)))
Proof
Definitions occuring in Statement : 
mk_perm: mk_perm(f;b)
, 
perm: Perm(T)
, 
inv_funs: InvFuns(A;B;f;g)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
perm_f: p.f
, 
pi1: fst(t)
, 
mk_perm: mk_perm(f;b)
, 
perm_b: p.b
, 
pi2: snd(t)
, 
perm: Perm(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
mk_perm_wf, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
functionIsType, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}f,b:T  {}\mrightarrow{}  T.    (InvFuns(T;T;f;b)  {}\mRightarrow{}  (mk\_perm(f;b)  \mmember{}  Perm(T)))
Date html generated:
2019_10_16-PM-00_58_42
Last ObjectModification:
2018_10_08-AM-09_48_59
Theory : perms_1
Home
Index