Nuprl Lemma : int_seg_subtype
∀[m1,n1,m2,n2:ℤ].  {m1..n1-} ⊆r {m2..n2-} supposing (m2 ≤ m1) ∧ (n1 ≤ n2)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
lelt: i ≤ j < k, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
le: A ≤ B, 
guard: {T}
Lemmas referenced : 
subtype_rel_sets, 
lelt_wf, 
le_transitivity, 
less_than_transitivity1, 
and_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
intEquality, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[m1,n1,m2,n2:\mBbbZ{}].    \{m1..n1\msupminus{}\}  \msubseteq{}r  \{m2..n2\msupminus{}\}  supposing  (m2  \mleq{}  m1)  \mwedge{}  (n1  \mleq{}  n2)
Date html generated:
2016_05_13-PM-04_02_00
Last ObjectModification:
2015_12_26-AM-10_56_51
Theory : int_1
Home
Index