Nuprl Lemma : permr_weakening

T:Type. ∀as,bs:T List.  ((as bs ∈ (T List))  (as ≡(T) bs))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  permr: as ≡(T) bs all: x:A. B[x] implies:  Q cand: c∧ B member: t ∈ T squash: T uall: [x:A]. B[x] true: True prop: exists: x:A. B[x] sym_grp: Sym(n) so_lambda: λ2x.t[x] perm: Perm(T) subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q nat: satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_apply: x[s] id_perm: id_perm() mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) identity: Id
Lemmas referenced :  less_than_wf and_wf squash_wf int_formula_prop_eq_lemma intformeq_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties length_wf_nat lelt_wf decidable__le int_seg_properties non_neg_length perm_f_wf select_wf all_wf int_seg_wf id_perm_wf list_wf equal_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination because_Cache hypothesis hypothesisEquality equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_pairFormation dependent_pairFormation dependent_functionElimination equalityTransitivity cumulativity setElimination rename independent_isectElimination productElimination dependent_set_memberEquality unionElimination setEquality intEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    ((as  =  bs)  {}\mRightarrow{}  (as  \mequiv{}(T)  bs))



Date html generated: 2016_05_16-AM-07_32_31
Last ObjectModification: 2016_01_16-PM-11_09_33

Theory : perms_2


Home Index